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Abstract

Particular integral formulations are presented for two- and three-dimensional transient uncoupled thermoelastic
analysis. These formulations differ from previous particular integral formulations in that the equation of uncoupled
thermoelasticity including the heat conduction equation is fully satisfied to obtain particular integrals. The equation of
the steady-state thermoelasticity is now used as the complementary solution and two global shape functions are con-
sidered to approximate the transient term of the heat conduction equation so that two sets of particular integrals could
be derived.

The numerical results for both sets of particular integrals are given for three example problems and compared with
their analytical solutions. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Boundary element methods (BEM) have been developed into a powerful numerical method for solving
transient thermoelastic problems. The direct application of the BEM to the transient thermoelastic prob-
lems generates a domain integral in addition to the usual surface integrals (Banerjee, 1994). Generally three
methods have been proposed over the years to eliminate this volume integration problem: (1) the convo-
lution method, (2) the volume integral conversion method and (3) the particular integral method.

Over the last 20 years the convolution method, using the time-domain fundamental solution and a time-
stepping technique, has been fully developed for multi-region axisymmetric, two- (2D) and three-dimen-
sional (3D) thermoelasticity as well as thermoplasticity (Dargush, 1987; Dargush and Banerjee, 1989, 1990,
1991a, 1991b, 1992; Chopra, 1992; Wang, 1995). While the convolution method gives excellent results, this
approach suffers from the need to store the entire displacement, stress and temperature history of the
solution to evaluate the convolution integrals, which requires a substantial amount of computer resources.
Therefore a more practical alternative must be developed.
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Another alternative is the volume integral conversion method which transforms exactly the volume
integral into integrals over the boundary. The exact form of volume integral conversion method for 3D
thermoelasticity was presented by Rizzo and Shippy (1977). Later, Banerjee and Butterfield (1981) and
Banerjee (1994) also described the exact form for both 2D and 3D stress analyses of bodies subjected to a
distribution of temperature or a hydraulic potential. While these are boundary-only formulations, their
approach lacked generality and was restricted essentially to steady-state temperature distributions. Al-
though it is now possible to convert the volume integrals into a boundary integral form using global shape
function (GSF) for the time derivative term, this approach has not been investigated here (for details see
Park (2001)).

The other alternative is the particular integral method that obtains a total solution as the sum of a
complementary solution for the governing homogeneous differential equation and a particular solution for
the governing inhomogeneous differential equation. Henry and Banerjee (1988) first developed the par-
ticular integral formulations for 2D and 3D transient uncoupled thermoelasticity by adopting a body force
point-of-view for the thermal loading. Subsequently, Deb and Banerjee (1991) used a multiple regres-
sion scheme for the known temperature data to derive the particular integrals for the exact representation
of temperature distributions up to the quadratic order in both two and three dimensions. Particular in-
tegrals for the uncoupled quasistatic thermoelastic analysis of an anisotropic medium were presented
by Deb et al. (1991). Recently, Raveendra (2000) presented the particular integral formulations for axi-
symmetric uncoupled thermoelastic analysis by using piecewise polynomial basis functions. However, all
of the previous formulations (mentioned above) for thermoelastic analysis were developed by using
only the Navier equation with the known temperature data, without considering the heat conduction
equation.

In order to eliminate the need for the known temperature data as input, as in the previous formulations,
a new particular integral formulation for 2D and 3D transient thermoelastic analysis is presented by de-
veloping solutions of the uncoupled thermoelasticity equation including the equation of heat conduction.
The solution of the equation of the steady-state uncoupled thermoelasticity is used as the complementary
function. The particular integrals for displacement, traction, temperature and flux are derived by using two
GSFs, GSF1—(R — r) and GSF2—(R?> — #?Inr). In this newly developed analysis the unknown displace-
ment and traction can be obtained together with the unknown temperature and flux in a single analysis. In
order to evaluate the accuracy of the present formulations, results obtained for three example problems are
compared with their analytical solutions (AS). The effects of aspect ratios of a region and inclusion of
interior points are also discussed.

2. Previous particular integral formulation

In order to appreciate the essential features of the present formulation, the previous particular integral
formulation developed by Henry and Banerjee (1988) is first briefly examined here.

The governing differential equation of uncoupled thermoelasticity used in the previous formulation is the
Navier equation, which is expressed in terms of displacement u; as

(A + wujji + puagjy = (374 2p)aT; (1)

where A and p are Lame’s constants, o is the thermal coefficient of expansion, commas represent differ-
entiation with respect to spatial coordinates, and i, j = 1, 2(3) for two(three) dimensions.
The solution of the above equation can be represented as a sum of complementary function u{ satisfying
the homogeneous equation
(A+ wus ; + pu; . =0 (2)
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and particular integral ¥ satisfying the inhomogeneous equation
(4 + N)”ﬁji + WE,-,- = (34 +2u)aT, (3)
Then the total solutions for displacement u; and traction ¢ can be expressed as

wp = u +uf (4a)

=10+t (4b)

where ¢ and # are the complementary function and particular integral for traction respectively.

It should be noted here that the homogeneous Eq. (2) is that of the ordinary elastostatics.

By using Goodier’s method (Timoshenko and Goodier, 1951), the particular integral for displacement
can be expressed as a gradient of a thermoelastic displacement potential /(x)

uj (X) = h(x) (5)
Substituting of Eq. (5) into Eq. (3) yields
h(x) = 7T (x) (6)
where
(34 +2p)a
(A+2p) -~

By introducing the concept of GSF C(x, ¢,), the unknown temperature 7(x) can be approximated as
T(x) =) C(x,&)H(E) (7
n=1

where ¢(&,) is a set of fictitious scalar densities.
Then the thermoelastic displacement potential 4(x) and the particular integrals for displacement u?,
stress o, and traction ¢ can be found as (Henry and Banerjee, 1988)

M@zgmxmam 8)

wwziwmma> )

@®=§Mmmm> (10)

ﬁw=immmwm (1)
where -

Sij(x, &) = 0y AEy + 2UE;; — 6,;(34 + 2u)aC

Hi(x, &) = Sy(x, &)n;(x)
and
n;(x) = unit normal at x in the jth direction.
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Table 1
Comparison of functions in two formulations
Function Previous Present
C(x,¢,) R—r R—r
D(X7 fn) — (C]R — Czl")}"z
K(X7£'x) (BIR_BZF)VZ -
[][(X, én) (2BlR — 3Bzr)y,- (DlR — Dzr)rzy[
Ey(x,¢&,) (2B\R — 3B,r)d;; — 3By /1 (DR — Dyr)r?d; + (2D1R — 3Dar)y1y;
S,:,’(X, fn) 5,:/-/1E11 + ZHE,'_,' — 5,‘_,’(3/1 + Zu)mC 5,:,’;LE]] + Z,MEU — 5,‘](3/1 + Zﬂ)aD

Note: By =vy/2d, B, =y/(3(1 +d)), y = 32+ 2p)a/ (A +2p).

Functions C, K, U,, E;, and §j; in the above equations are summarized in Table 1 for the purposes of
comparison with those of the present formulation.

Finally one can obtain the following numerical implementation in matrix form (Henry and Banerjee,
1988)

[G{t} — [F{u} = [M{T} (12)
where
M) = {[G)[H] - [Fl[U]}[C]™ (13)

It should be noted from Eq. (12) that the unknown displacement or traction can be obtained with the
known temperature as input data, which must be determined from a separate analysis.

3. New particular integral formulation
Unlike the previous formulation, the governing differential equation of uncoupled thermoelasticity used
for the present formulation includes the heat conduction equation in addition to the Navier equation,

(A4 wujji + puyy — (344 2p)al; = 0 (14)

kT — pe,T =0 (15)

where k is the conductivity, p the mass density, ¢, the specific heat at constant strain, and a superposed dot
denotes a time derivative.

The solution of the above equations can be represented as a sum of complementary functions u§ and T
satisfying the homogeneous equations

(24 s, + i, — 34+ 2p)aTs = 0 (16)

kTS, =0 (17)
and particular integrals u” and 7P satisfying the total inhomogeneous equations

(A+ Wy 5 + g ;; — (32 +2p)aly =0 (18)

kTj; = pe.T =0 (19)

It should be noted that the homogeneous Eqs. (16) and (17) now are those for the steady-state thermo-
elasticity.



K.-H. Park, P.K. Banerjee | International Journal of Solids and Structures 39 (2002) 2871-2892 2875

3.1. Complementary solutions

The boundary integral equation of the homogeneous differential Eqs. (16) and (17) can be expressed as
(Dargush and Banerjee, 1991a; Banerjee, 1994)

s 1)/ (% S5 )
i = i - i ds(x 20
{ Cr T¢(¢ 0 G|l ¢(x) 0 Frr| | T°(x) (x) (20)
where ¢° is the complementary function for flux, the coefficients C;; and Cr represent the jump terms re-
sulting from the singular nature of Fj; and Fyr respectively, and Gy;, Gz, Grr, Fjj, Fjr and Frr are defined in

the Appendix A.
The total solutions for displacement u;, traction ¢, temperature 7" and flux ¢ are

w = u +uf (21a)
h=16+1 (21b)
T=T°¢+T1P (21c)
9=4"+q" (21d)

where ¢* is the particular integral for flux.
3.2. Particular integrals

Eq. (19) contains the time derivative of unknown transient temperature 7 (x)'within domain. By as-
suming the function can be represented by an infinite series, an expression relating T'(x) to a set of fictitious
scalar densities ¢(¢,) via a GSF C(x, &,) can be written as

T(x) =) C(x,&)(&,) (22)

n=1

Since the GSF is used to approximate 7(x), the choice of these functions has direct effects on the accuracy
of this method. Several functions were considered and two functions are chosen for illustration:

GSFl: C(x,¢,)=R—r (23a)
GSF2: C(x,&,) =R*—r’Inr (23b)
where r is the distance between x and ¢,, and R is a constant chosen to be the largest dimension of the

problem domain.
Then the particular integrals which satisfy Eqgs. (18) and (19) can be found as (see Appendix B)

(x) = D(x, £,)d(E,) (24)
L) =3 Uix £)d(E) (25)

n=1
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where

D(x,¢,) = (CiR — Cor)r*  for GSF1 (26a)
= (CIR* — Cy* — Gy’ Inr)r* for GSF2 (26b)

Ui(x,&,) = (DiR — Dyr)r?y;  for GSF1 (27a)
= (D\R* = Dyr* — Di? Inr)r?y, for GSF2 (27b)

K K , K , (6+d)x , K
Ci=n; C= L Cl=ny C=—— 1 =
YT2d0 TP T 31 +d) Y240 2 162+d)?" 7 42+d)
b b p

Wtd) T3 raGrd)

, B , B(d* +14d +32) o

Dr=siera Dz__16(2+d)2(4+d)2’ PTAR+d)(E+d)

K = pe/k, f=xa(34+2u)/(2 + 2u), and d is the dimensionality of the problem.
A particular integral for stress can be derived by substituting Egs. (24) and (25) into the strain—dis-
placement relation and the stress—strain law:

O-f)/(x) = Zsij(x7 én)qs(&n) (28)
n=1
where
En(x,&,) ={(2+d)D;R — (3+d)Dy}r* for GSF1 (30a)
={Q2+d)D\R* — {(4+d)Dy + Dy }r* —4(4 + d)Dyr* Inr}r?  for GSF2 (30b)
E;(x,&,) = (DiR — Dyr)1?d; + (2D1R — 3Dyr)y,y;  for GSF1 (31a)

= (D\R* = Dy — Diy? Inr)i?d; + {2D\R> — (4D, + D})r* — 4Dy” Inr}yy;  for GSF2
(31b)
Then a particular integral for traction is derived by multiplying the above equation with appropriate

normals:

o]

F(x) =D Hi(x,&)(&,) (32)

n=1
where
Hi(xa én) = Sij(x7 f,,)l’lj(X)

A particular integral for flux can be then derived from Eq. (24) as

- iqx, £)b(E) (33)
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where
oD
okx,¢&,) = — ka— = —k(2C\R — 3Cyr)yin; for GSF1 (34a)
n
= —k(2C|R* — (4C, + Cy)r* — 4Cy? Inr)ym; for GSF2 (34b)

The details of derivation for particular integrals uf, #, TP and ¢ using the global shape function
GSF1 are given in Appendix B. The particular integrals using the global shape function GSF2 can be
derived in the same manner as shown in Appendix B. It is very clear from Table 1 that the particular
integrals, which are obtained by purely satisfying the Navier equation of elasticity with an arbitrary known
temperature distribution, are quite different from those obtained by satisfying both heat and elasticity
equations.

4. Numerical implementations

The boundary integral Eq. (20) for the steady-state thermoelasticity can be expressed in matrix form as
(Banerjee, 1994)

Gy Gr |G\ _|F Er|Jul|_
G- B )

Introducing Eqgs. (21a)—(21d) in the above equation, the complementary functions are eliminated:

Gy Gu|Jul _|Fy Fr|fw| _ Gy Ge|[8& | |F Fr|fw (36)

If a finite number of &,, N, are chosen, the particular integrals for displacement, traction, temperature and
flux can be written as

{nf=15]{ )
(5)-[2J

Substituting Egs. (37) and (38) into Eq. (36) and considering the fictitious nodal values as

{¢} =1 {1} (39)

one can obtain the following equation

Gy Gl [u\ _[F Br|fw)\ _[Mz] s

A/[j _ Gij GjT H; . E‘j F}T U; -1

il AL G le]-[8 Z][5)e “
Using an explicit time integration scheme, Eq. (40) can be expressed as

Gy G| [\ | Fy ErtaMr) fu'_ 1 [Mp] pen (42)
| 0 Grr|lyg 0 Fr+aMmg||T At | Myr

where
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The right side of Eq. (42) is known at time ¢, since it involves values that have been specified either as initial
conditions or calculated previously. Introducing the boundary conditions at time ¢, the final system can be
written as

[[{X} = {b} (43)
where X is unknown vector of displacement, traction, temperature and flux, b is a known vector and 4 is
the coefficient matrix. Therefore the unknown displacement or traction can be obtained together with the
unknown temperature or flux.

As mentioned in the previous works (Henry and Banerjee, 1988; Wang and Banerjee, 1988) the use of
interior points usually leads to a better representation of the particular integrals. If the interior points are
used, then formulation is modified as follows:

For convenience, define, for example,

{uy} = {u1 wp T}T
{ta} = {tl 5] q}T
Utilizing this new convention Eq. (20) can be written for interior points as

{1} = [Gpal; { } —[Fa]i{ufg}b (45)

where subscript “i”” denotes interior values and subscript “b”’ boundary values.
Substituting the total solutions, it can be rewritten as

(Gpditn}y = Flifun}y =t = (Gl {8}, — (Rl {u} — {2}, (46)
Considering Egs. (37) and (38) as

(), = U {4},

{u}, = Wl {é}, (47)

{0}, = {d}

and substituting the above equation into Eq. (46), one can obtain a system of equation for the interior
points

(Gralidtnbo = [l {usy — {ue}s = (Gl 5y — Bl (U, — (U]}, (43)
Also for boundary points,
(Graluftnds = Finlufushy = (Gp[Ely = Fudy U {8} (49)

Combining the above two equations and using Eq. (39), one obtains

e[l ]t )=l .

l

where

N (A A

and [/ is identity matrix.
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By using the explicit time integration scheme and incorporating the known boundary conditions, the
final system of equation can be then cast into the same form as in Eq. (43).

5. Numerical examples

In order to test the accuracy of the present formulations, three example problems are solved and the
results are compared with the AS. The first example is presented to demonstrate the effects of the aspect
ratio and inclusion of interior points. For second and third examples 3D applications of the present for-
mulations are described for the two GSFs. The material properties used in all these example problems are:
E=1.0,0=0.02,v=0.3, k = 1.0 and pc, = 1.0 and all state variables are assumed to be zero initially.

5.1. Example 1: a unit cube

The first example is a unit cube that is initially at zero temperature and is subjected to a sudden heat on
one of its faces. The cube assumes to be in plane strain with three of its four lateral sides insulated and
restrained from normal displacement. The heated face is raised and maintained at a temperature of unity
(Fig. 1). Additionally for the 3D idealization the front and back faces are assumed to be insulated with
roller supports.

The AS of temperature T, displacement u and lateral stress o, for this example problem can be found in
the classical books of Carslaw and Jaeger (1959, p. 100) and Timoshenko and Goodier (1951, p. 401) as

4 S (—1) (2n 4 1)*n2kt (2n + 1)my
T = 1 _— _—_ _—_—
G =1=22 5,57 < 4L oS\

u(p,t) = ((11+_ v‘?)oc /Oy Tdy

001) = ~ e T

where L is the diffusion length and x the diffusivity, both are being assigned unit values.

— <
—

1l

o

~—1.0

Fig. 1. A suddenly heated unit cube.



2880 K.-H. Park, P.K. Banerjee | International Journal of Solids and Structures 39 (2002) 2871-2892

First the effect of aspect ratio is investigated for the present 2D and 3D particular integral formulations.
The models are meshed in such a way that the number of elements in the diffusive (vertical) direction is set
to 4 for all cases. The number of elements in the horizontal direction is set to 2 for Lx =0.25 and 4 for other
two cases of Lx =1.0 and 4.0. The meshes for 2D and 3D are shown in Figs. 2 and 3. The computed values
of temperature at y = 0, for a time step of 0.01, are shown in Figs. 4 and 5 for GSF1 and GSF2 for both 2D
and 3D problems, together with their AS. Best solution is obtained for the Lx =0.25 case. This can be
expected because in such a geometry the GSFs can best represent the domain variation using the infor-
mation available on the boundary. Generally for both 2D and 3D applications the solutions are extremely
poor at early times, but improve as the steady state is approached. Although it is probably fair to state that
for 3D these early time errors are only marginally tolerable. It can also be seen that the errors due to aspect
ratio effect in all 3D cases are much less significant than those of the corresponding 2D solutions. The
solutions for the displacement at y = 1 and the lateral stress y = 0.5 for a time step 0.01 are shown for the
3D problem in Figs. 6 and 7 respectively. These are once again better than the corresponding 2D results,
but the results for GSF2 in 3D appear to be worse than those obtained for GSF1.

It is seen from Fig. 4(a) and (b) that there are some significant errors at the early times for the aspect
ratio Lx = 1.0 even though the relatively large number of boundary elements (16 boundary elements) are
used in this 2D analysis. In order to reduce these early time errors, effects of different GSFs, size of the time
steps, use a Lagrange multiplier type constraints, etc. were investigated (see Park, 2001). It appears that the
only way to reduce these errors in 2D is to include some interior points. Fig. 8(a) and (b) show the effect of

(a) Lx=0.25 (b) Lx=1.0

I L
T T

(c) Lx=4.0

Fig. 2. Modeling mesh for aspect ratio effect (2D).
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- -
(a) Lx=0.25 (b) Lx=1.0
I / | |
( J | 1
{ | | l |
| J | |

(c) Lx=4.0

Fig. 3. Modeling mesh for aspect ratio effect (3D).

0.6

Temperature
=)
~
T
Temperature
=)
~
T

02 —AS. 0.2 —AS.
o Lx=0.25 (GSF1) o L[x=0.25 (GSF2)

0.0 K a Lx=1.0 (GSF1) 0.0 a Lx=1.0 (GSF2)

ann? < x  Lx=4.0 (GSF1) x x  Lx=4.0 (GSF2)

X
202 X L L L L 202 L s L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) Time (b) Time

Fig. 4. (a) Effect of aspect ratio: temperature at y = 0 (GSF1, 2D). (b) Effect of aspect ratio: temperature at y = 0 (GSF2, 2D).

inclusion of interior points on results of temperature at y = 0. In these figures the number in the parenthesis
represents the number of elements used for the analysis. Plus (+) sign indicates the additional number of the
interior points involved. For example, (4) and (16) respectively represent 4 and 16 boundary elements, while
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1.0 1.0
08 08 |
o 06 0.6
g E
= =
g 04 f g 04 f
: :
= 02 —AS. = 0.2 —AS.
o Lx=0.25 (GSF1) o 1x=0.25 (GSF2)
0.0 s 1x=1.0 (GSF1) 0.0 a Lx=1.0 (GSF2)
x  Lx=4.0 (GSF1) x  Lx=4.0 (GSF2)
02 s s s \ 02 ‘ \ \ \
0.0 02 0.4 0.6 0.8 1.0 0.0 02 04 06 038 10
(a) Time (b) Time

Fig. 5. (a) Effect of aspect ratio: temperature at y = 0 (GSF1, 3D). (b) Effect of aspect ratio: temperature at y = 0 (GSF2, 3D).

4.0

4.0
~ 30 r 30t
i g
g 20 20t
] g
= —AS. = —AS.
LTy 0 Lx=0.25 (GSF1) 2 L o Lx=025 (GSF2)
’ a Lx=1.0 (GSF1) ’ a Lx=1.0 (GSF2)
x Lx=4.0 (GSF1) x  Lx=4.0 (GSF2)
0.0 : ! ! . 0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) Time (b) Time

Fig. 6. (a) Effect of aspect ratio

: displacement at y = 1 (GSF1, 3D). (b) Effect of aspect ratio: displacement at y = 1 (GSF2, 3D).

0.5 0.5
0.0

0.0 s —AS.
& 05 o Lx=0.25 (GSF1) o 05 o Lx=0.25 (GSF2)
=
E o Lx=1.0 (GSF1) b o s Lx=10 (GSF2)
2 -1.0 | + Lx=4.0 (GSF1) g 10 r + Lx=4.0 (GSF2)
£ =
& @n
7 15T z ISk
3 2
- < L
3 20 3 20

25 25

_30 L L L L _30 1 1 1 1

0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

(a) Time (b) Time

Fig. 7. (a) Effect of aspect ratio: lateral stress at y = 0.5 (GSF1, 3D). (b) Effect of aspect ratio: lateral stress at y = 0.5 (GSF2, 3D).

(4 4+ 3) means 4 boundary elements and 3 interior points. It can be seen that with the introduction of even
modest number of interior points (3 points), the results at the early time improve. Although not shown here,
similar improvements are also visible in the displacement and stress results.
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—AS.

o

I
+
o

GSF2 (4)
GSF2 (4+3)
GSF2 (16)
GSF2 (16+3)

1.0
E 0.8 |
L « 06 -
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0.8

Fig. 8. (a) Effect of interior points: temperature at y = 0 (GSF1, 2D). (b) Effect of interior points: temperature at y = 0 (GSF2, 2D).

5.2. Example 2: a hollow cylinder

The second example is that of a hollow cylinder with initial temperature zero. The inner radius a = 1 and
outer radius b = 2. The inner surface of the cylinder is maintained at a temperature of unity at time greater
than zero, while the outer surface in maintained at temperature zero. In this case, only the positive octant of
the cylinder is modeled, while symmetry constraints are imposed (Fig. 9). Fig. 10 shows typical 3D mesh
with 48 quadratic boundary elements, where the front and back faces of the cylinder were assumed to be
insulated roller boundaries.

The exact solutions of temperature 7, displacement u and tangential stress g, for this example problem
can be obtained as (Carslaw and Jaeger, 1959, p. 207; Timoshenko and Goodier, 1951, p. 409)

00 bn
T+ Zﬂ o:)

r(r,

u(r, t) =

1) =

(I+v)l

(1—v) r

o (aoy,)

J3 (bo)

" H.
/ T(r, t)rdr+H1r+—2
B r

Fig. 9. A hollow cylinder.

{Jo(ro,) Yo (bor,) — Jo(bar,) Y

o(r,) } exp(—kolt)
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/\

Fig. 10. Typical modeling mesh for a hollow cylinder.

where T} is the constant temperature in the inner surface, J, and Y, are Bessel functions of the first and
second kind respectively, « is the root of

Jo(aa) Yy (ba) — Jo (b)Y, (aa) = 0,
and the constants H; and H, are

(=2l +v) 1 b  Ardr
=G Gy [ e

Ca(l4v) 1 b
Hzm(bz—_l)\/a T(r,t)rdr

The results from the present formulation, for a time step of 0.01, are compared with the exact solutions
in Figs. 11-15 for temperature at » = 1.5, and displacement and tangential stress at the inner and outer
boundaries. For both of GSF1 and GSF2 good agreement can be obtained as the number of boundary

04
03
2 02t
g
£
s 0.1 r
= —AS.
o GSFI (16)
0.0 a GSFI (48)
o GSF2 (48)
o1 ‘ ‘ ‘ ‘
0.00 0.05 0.10 0.15 0.20 0.25

Time

Fig. 11. A hollow cylinder: temperature at » = 1.5 (3D).
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a o GSFI (16)
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0.0 ‘ ‘ ‘ ‘
0.00 0.05 0.10 0.15 0.20 0.25
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Fig. 12. A hollow cylinder: displacement at r = 1 (3D).
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T

Displacement ("‘10'z )
=
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o GSF2(48)
0.0
0.00 0.05 0.10 0.15 0.20 0.25

Time

Fig. 13. A hollow cylinder: displacement at » = 2 (3D).
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Fig. 14. A hollow cylinder: tangential stress at » = 1 (3D).
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0.0 L L L L
0.00 0.05 0.10 0.15 0.20 0.25
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Fig. 15. A hollow cylinder: tangential stress at » = 2 (3D).

elements is increased from 16 to 48, except for the initial few values of tangential stress in GSF2 as shown in
Figs. 14 and 15.

5.3. Example 3: a solid sphere

A solid sphere with a traction-free boundary and initial temperature zero is considered as the third
example. The outer radius a = 1 is subjected to a sudden increase of temperature at time ¢ =0 and
maintained at a temperature of unity. A quarter of sphere is analyzed (Fig. 16). Fig. 17 shows typical mesh
with 48 quadratic boundary elements.

The exact solutions of temperature 7, displacement u and tangential stress g, for this example problem
can be obtained as (Carslaw and Jaeger, 1959, p. 233; Timoshenko and Goodier, 1951, p. 417)

o0 2.2
T(r,t) =T, —2TOZ(—1)"exp (— o f t)
n=1

a

(I+v)o 1

" H,
2 4
u(r,t) = 7(1 ) 7 /0 T(r,t)r"dr + Hyr + =

~—1.0

Fig. 16. A solid sphere.
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CUAN
1 —
) 7 /><>< \i\
LT
AN T

Fig. 17. Typical modeling mesh for a solid sphere.

i ak 1 " 5 73 H’; E H4
Gg(r’t)_(l—v)ﬁ/o T(r,t)r*dr (1—v)T(r’t)+l—2v+(l—|—v) 3

where T, is the constant temperature at the outer surface, and the constants H; and H, are

(1 —2v) 2

— ‘ 2
H3—(17_v>§/0 T(r,t)r‘ dr

H4:0

The results from the present formulations, for a time step of 0.01, are compared with the AS in Figs. 18—
20 for temperature at the center, and displacement and tangential stress at the outer boundary. Again, good
agreement can be obtained as the number of boundary elements is increased from 12 to 48, except for the
initial few values of tangential stress in GSF2 as shown in Fig. 20. It is of considerable interest to note that
these results would appear to converge without the aid of interior points.

08
o 06 |
1=
=
g
ué_ 04
5] ——AS.
3
0.2 o GSFI (12)
s GSF1 (48)
0.0 4 & o + GSE2(12)
+ o
o GSF2(48)
02 ‘ ‘ ‘ ‘
0.00 0.05 0.10 0.15 0.20 0.25

Time

Fig. 18. A solid sphere: temperature at » = 0 (3D).
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Fig. 19. A solid sphere: displacement at » = 1 (3D).
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30 ‘ ‘ ‘ ‘
0.00 0.05 0.10 0.15 0.20 0.25

Time

Fig. 20. A solid sphere: tangential stress at » = 1 (3D).

6. Conclusions

The particular integral formulations have been developed for the 2D and 3D transient uncoupled
thermoelastic analysis. Unlike the previous formulations in the literature, the uncoupled thermoelasticity
equation including the heat conduction equation was used to obtain the particular integrals. The equation
of the steady-state thermoelasticity was used as the complementary function and two GSFs were chosen to
approximate the transient term of the heat conduction equation. The present formulations were validated
with three example problems.

The main conclusions of the present work are summarized in the following:

1. For the present particular integral formulations the effect of aspect ratio is investigated. Lx =0.25 case
gives better results in both 2D and 3D. However, in a 3D, the errors due to aspect ratio effect are less
significant than those in a 2D problem.

2. To reduce the error at the early time, the effects of increase of the number of elements, inclusion of the
interior points and the different choices of GSFs are considered. It appears that the only way to reduce
the error at the early time in a 2D analysis is to include some of interior points. For a 3D analysis the
error can be reduced by increasing the number of elements without using any interior points.

3. It appears that the particular integral method is a reasonably good alternative to the convolution method
for 3D problems of transient uncoupled thermoelasticity.
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Appendix A. Steady-state thermoelastic kernels

2889

This appendix provides the details of all the kernel functions utilized in the steady-state uncoupled
thermoelastic boundary element formulation of Eq. (20).

A.1. Two-dimensional kernels

For the displacement kernel,

L S
Gij(X7 é) :gﬂ(l _v) rz«/ _5U(3—4V) Inr
GlT(X é) 87{8{(,’1—’—2)) ,-r(l—Zlnr)
1
G]T(X7€) _2_’[[]{ an

whereas, for the traction kernel,

73

1 I 1 29 Vil
i(x,¢) = - {— . -

_E(l—v)r

(Ouihe ) (1 _ 5y 4 WM (1 _ oy
r r

1 (324 2p) [ 2yiycn
—n;(1 =21
Bl 8 =g v aw) [ p il =2ln)
1 yeny
Frr(x,€) = 2nr
A.2. Three-dimensional kernels
For the displacement kernel,
1 1 1 ryy;
Gy(x, ¢) = 16n u(l—=v)r [ +04(3 4v)]
1 (32+2uwo y;
Gir(%C) = g ki 20 r
1 1
G &) =% 7

whereas, for the traction kernel,

1 1 1 391Vt
i(x 6)7871 (1—v) ,,2{ r

1 (3/1 + 2:”)“ 1 ViVl
Fir(x,¢) = 81 (A+2p) r{ r?
1 h'nK
Frr(%,8) = 7~

A2

]

(5ijyxn;c +y,-n,-) (
r v

1—2v) + 22 (1 — 2v)

(A.1)

(A.2)

(A.3)

(A4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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where v, the Poisson’s ratio, x;, coordinates of integration point, ;, coordinates of field point, y, = x; — &,
2
=Y

Appendix B. Derivation of particular integrals

This Appendix contains the detailed derivation of particular integrals (uf, ¢, TP and ¢P) for transient
problems of uncoupled thermoelasticity by using the global shape function GSF1. The solutions for these
particular integrals using the global shape function GSF2 essentially follow the same method of derivation.

B.1. Particular part

The particular part of the governing equation can be expressed from Egs. (18) and (19) as

(4 + wupy; + puagy — (34 +2p)oT; =0 (B.1)

KT}, = pe.T =0 (B.2)

B.2. Derivation of TP and u*

First 7P and u’ can be obtained as follows:
Let us assume that

T(x)=> C(x,&)$(&) (B.3)
n=1
T°(x) = > D(x,&,)h(&,) (B.4)
n=1
(%) = 3 Uix,&)(E,) (B.5)
n=1
where
Cx,¢)=R—r (B.6)
D(x,¢&,) = (C\R — Cor)r? (B.7)
Ui(x,&,) = (DiR — Dar)y, (B.3)
By substituting (B.3)—(B.5) into (B.1) and (B.2), one can obtain the following equations
(2+ WUy + nUsy — 34+ 2p)aD,; = 0 (B.9)
By substituting (B.6) and (B.7) into (B.10), the coefficients C; and C, can be derived
D;; =2dC\R - 3(1 +d)Cor (B.11)
K K
C, = — = B.12
"= ©T 301 a) (B.12)
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In addition, by substituting (B.7) and (B.8) into (B.9), the coefficients D; and D, can be recovered to give

Ujjj = Ui,jj = {2(2 + d)D]R — 3(3 + d)DzV}yi (B13)

D; = (2CiR — 3Cyr)y; (B.14)
BC BCy

S.Dy = , D= B.15

T 2+d) TP (3+4d) (B.15)

B.3. Derivation of t!

Next # can be derived as follows:
Let us assume that o7 can be expressed as

GS(X) = ZSij(xa én)qs(én) (B16)
n=1
Considering the strain—displacement relation and the stress—strain law:
h(X) = 32 (X) + 2uel () — 3;,(34 + 2u)aTP(x) (B.17)
or
Sij(x, &) = 0y AEn(X, E,) + 2uEy(X, &) — 6,(34 + 2u)aD(x, &) (B.18)
where
6U; 2
Ey=5"={Q+d)DiR ~ (3 +d)Dar}r (B.19)
1
1 /oU;, oU;
Ej=5 ( Ox; ax;) = (DiR — Dyr)r*;; + (2D\R — 3D,r)y1y; (B.20)

Then # can be obtained by considering the appropriate normals as

1 (x) = ifb(& &)b(&,) (B.21)
where
]‘I[(X, én) = Sij(xa in)nj(x) (B22)

B.4. Derivation of g”

Finally ¢P can be derived from Eq. (B.4) as

P(x) = 0(x,&)(&,) (B.23)
n=1
where
o(x,&,) = L —k(2C1R = 3Cor)yim; (B.24)

on
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